]> git.neil.brown.name Git - wiggle.git/blob - tests/lustre/pool/merge
merge: fix a problem with unmatchable hunks.
[wiggle.git] / tests / lustre / pool / merge
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * GPL HEADER START
4  *
5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 only,
9  * as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License version 2 for more details (a copy is included
15  * in the LICENSE file that accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License
18  * version 2 along with this program; If not, see
19  * http://www.gnu.org/licenses/gpl-2.0.html
20  *
21  * GPL HEADER END
22  */
23 /*
24  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Use is subject to license terms.
26  *
27  * Copyright (c) 2010, 2017, Intel Corporation.
28  */
29 /*
30  * This file is part of Lustre, http://www.lustre.org/
31  * Lustre is a trademark of Sun Microsystems, Inc.
32  *
33  * lustre/ldlm/ldlm_pool.c
34  *
35  * Author: Yury Umanets <umka@clusterfs.com>
36  */
37
38 /*
39  * Idea of this code is rather simple. Each second, for each server namespace
40  * we have SLV - server lock volume which is calculated on current number of
41  * granted locks, grant speed for past period, etc - that is, locking load.
42  * This SLV number may be thought as a flow definition for simplicity. It is
43  * sent to clients with each occasion to let them know what is current load
44  * situation on the server. By default, at the beginning, SLV on server is
45  * set max value which is calculated as the following: allow to one client
46  * have all locks of limit ->pl_limit for 10h.
47  *
48  * Next, on clients, number of cached locks is not limited artificially in any
49  * way as it was before. Instead, client calculates CLV, that is, client lock
50  * volume for each lock and compares it with last SLV from the server. CLV is
51  * calculated as the number of locks in LRU * lock live time in seconds. If
52  * CLV > SLV - lock is canceled.
53  *
54  * Client has LVF, that is, lock volume factor which regulates how much
55  * sensitive client should be about last SLV from server. The higher LVF is the
56  * more locks will be canceled on client. Default value for it is 1. Setting LVF
57  * to 2 means that client will cancel locks 2 times faster.
58  *
59  * Locks on a client will be canceled more intensively in these cases:
60  * (1) if SLV is smaller, that is, load is higher on the server;
61  * (2) client has a lot of locks (the more locks are held by client, the bigger
62  *     chances that some of them should be canceled);
63  * (3) client has old locks (taken some time ago);
64  *
65  * Thus, according to flow paradigm that we use for better understanding SLV,
66  * CLV is the volume of particle in flow described by SLV. According to this,
67  * if flow is getting thinner, more and more particles become outside of it and
68  * as particles are locks, they should be canceled.
69  *
70  * General idea of this belongs to Vitaly Fertman (vitaly@clusterfs.com).
71  * Andreas Dilger (adilger@clusterfs.com) proposed few nice ideas like using
72  * LVF and many cleanups. Flow definition to allow more easy understanding of
73  * the logic belongs to Nikita Danilov (nikita@clusterfs.com) as well as many
74  * cleanups and fixes. And design and implementation are done by Yury Umanets
75  * (umka@clusterfs.com).
76  *
77  * Glossary for terms used:
78  *
79  * pl_limit - Number of allowed locks in pool. Applies to server and client
80  * side (tunable);
81  *
82  * pl_granted - Number of granted locks (calculated);
83  * pl_grant_rate - Number of granted locks for last T (calculated);
84  * pl_cancel_rate - Number of canceled locks for last T (calculated);
85  * pl_grant_speed - Grant speed (GR - CR) for last T (calculated);
86  * pl_grant_plan - Planned number of granted locks for next T (calculated);
87  * pl_server_lock_volume - Current server lock volume (calculated);
88  *
89  * As it may be seen from list above, we have few possible tunables which may
90  * affect behavior much. They all may be modified via sysfs. However, they also
91  * give a possibility for constructing few pre-defined behavior policies. If
92  * none of predefines is suitable for a working pattern being used, new one may
93  * be "constructed" via sysfs tunables.
94  */
95
96 #define DEBUG_SUBSYSTEM S_LDLM
97
98 #include <lustre_dlm.h>
99 #include <cl_object.h>
100 #include <obd_class.h>
101 #include <obd_support.h>
102 #include "ldlm_internal.h"
103
104 /*
105  * 50 ldlm locks for 1MB of RAM.
106  */
107 #define LDLM_POOL_HOST_L ((NUM_CACHEPAGES >> (20 - PAGE_SHIFT)) * 50)
108
109 /*
110  * Maximal possible grant step plan in %.
111  */
112 #define LDLM_POOL_MAX_GSP (30)
113
114 /*
115  * Minimal possible grant step plan in %.
116  */
117 #define LDLM_POOL_MIN_GSP (1)
118
119 /*
120  * This controls the speed of reaching LDLM_POOL_MAX_GSP
121  * with increasing thread period.
122  */
123 #define LDLM_POOL_GSP_STEP_SHIFT (2)
124
125 /*
126  * LDLM_POOL_GSP% of all locks is default GP.
127  */
128 #define LDLM_POOL_GP(L)   (((L) * LDLM_POOL_MAX_GSP) / 100)
129
130 /*
131  * Max age for locks on clients.
132  */
133 #define LDLM_POOL_MAX_AGE (36000)
134
135 /*
136  * The granularity of SLV calculation.
137  */
138 #define LDLM_POOL_SLV_SHIFT (10)
139
140 static inline u64 dru(u64 val, u32 shift, int round_up)
141 {
142         return (val + (round_up ? (1 << shift) - 1 : 0)) >> shift;
143 }
144
145 static inline u64 ldlm_pool_slv_max(u32 L)
146 {
147         /*
148          * Allow to have all locks for 1 client for 10 hrs.
149          * Formula is the following: limit * 10h / 1 client.
150          */
151         u64 lim = (u64)L *  LDLM_POOL_MAX_AGE / 1;
152         return lim;
153 }
154
155 static inline u64 ldlm_pool_slv_min(u32 L)
156 {
157         return 1;
158 }
159
160 enum {
161         LDLM_POOL_FIRST_STAT = 0,
162         LDLM_POOL_GRANTED_STAT = LDLM_POOL_FIRST_STAT,
163         LDLM_POOL_GRANT_STAT,
164         LDLM_POOL_CANCEL_STAT,
165         LDLM_POOL_GRANT_RATE_STAT,
166         LDLM_POOL_CANCEL_RATE_STAT,
167         LDLM_POOL_GRANT_PLAN_STAT,
168         LDLM_POOL_SLV_STAT,
169         LDLM_POOL_SHRINK_REQTD_STAT,
170         LDLM_POOL_SHRINK_FREED_STAT,
171         LDLM_POOL_RECALC_STAT,
172         LDLM_POOL_TIMING_STAT,
173         LDLM_POOL_LAST_STAT
174 };
175
176 /**
177  * Calculates suggested grant_step in % of available locks for passed
178  * @period. This is later used in grant_plan calculations.
179  */
180 static inline int ldlm_pool_t2gsp(unsigned int t)
181 {
182         /*
183          * This yields 1% grant step for anything below LDLM_POOL_GSP_STEP
184          * and up to 30% for anything higher than LDLM_POOL_GSP_STEP.
185          *
186          * How this will affect execution is the following:
187          *
188          * - for thread period 1s we will have grant_step 1% which good from
189          * pov of taking some load off from server and push it out to clients.
190          * This is like that because 1% for grant_step means that server will
191          * not allow clients to get lots of locks in short period of time and
192          * keep all old locks in their caches. Clients will always have to
193          * get some locks back if they want to take some new;
194          *
195          * - for thread period 10s (which is default) we will have 23% which
196          * means that clients will have enough of room to take some new locks
197          * without getting some back. All locks from this 23% which were not
198          * taken by clients in current period will contribute in SLV growing.
199          * SLV growing means more locks cached on clients until limit or grant
200          * plan is reached.
201          */
202         return LDLM_POOL_MAX_GSP -
203                 ((LDLM_POOL_MAX_GSP - LDLM_POOL_MIN_GSP) >>
204                  (t >> LDLM_POOL_GSP_STEP_SHIFT));
205 }
206
207 /**
208  * Recalculates next stats on passed @pl.
209  *
210  * \pre ->pl_lock is locked.
211  */
212 static void ldlm_pool_recalc_stats(struct ldlm_pool *pl, timeout_t period)
213 {
214         int grant_plan = pl->pl_grant_plan;
215         u64 slv = pl->pl_server_lock_volume;
216         int granted = atomic_read(&pl->pl_granted);
217         int grant_rate = atomic_read(&pl->pl_grant_rate) / period;
218         int cancel_rate = atomic_read(&pl->pl_cancel_rate) / period;
219
220         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_SLV_STAT,
221                             slv);
222         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
223                             granted);
224         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
225                             grant_rate);
226         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
227                             grant_plan);
228         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
229                             cancel_rate);
230 }
231
232 /**
233  * Sets SLV and Limit from container_of(pl, struct ldlm_namespace,
234  * ns_pool)->ns_obd tp passed @pl.
235  */
236 static void ldlm_cli_pool_pop_slv(struct ldlm_pool *pl)
237 {
238         struct obd_device *obd;
239
240         /*
241          * Get new SLV and Limit from obd which is updated with coming
242          * RPCs.
243          */
244         obd = container_of(pl, struct ldlm_namespace,
245                            ns_pool)->ns_obd;
246         read_lock(&obd->obd_pool_lock);
247         pl->pl_server_lock_volume = obd->obd_pool_slv;
248         atomic_set(&pl->pl_limit, obd->obd_pool_limit);
249         read_unlock(&obd->obd_pool_lock);
250 }
251
252 /**
253  * Recalculates client size pool @pl according to current SLV and Limit.
254  */
255 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
256 {
257         timeout_t recalc_interval_sec;
258         int ret;
259
260         recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
261         if (recalc_interval_sec < pl->pl_recalc_period)
262                 return 0;
263
264         spin_lock(&pl->pl_lock);
265         /*
266          * Check if we need to recalc lists now.
267          */
268         recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
269         if (recalc_interval_sec < pl->pl_recalc_period) {
270                 spin_unlock(&pl->pl_lock);
271                 return 0;
272 <<<<<<< found
273         }
274 ||||||| expected
275          */
276         ldlm_pool_recalc_grant_plan(pl);
277
278         pl->pl_recalc_time = ktime_get_real_seconds();
279         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
280                             recalc_interval_sec);
281         spin_unlock(&pl->pl_lock);
282 =======
283          */
284         ldlm_pool_recalc_grant_plan(pl);
285
286         pl->pl_recalc_time = ktime_get_seconds();
287         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
288                             recalc_interval_sec);
289         spin_unlock(&pl->pl_lock);
290 >>>>>>> replacement
291 <<<<<<< found
292 ||||||| expected
293  */
294 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
295 {
296         time64_t recalc_interval_sec;
297         int ret;
298 =======
299  */
300 static int ldlm_cli_pool_recalc(struct ldlm_pool *pl)
301 {
302         timeout_t recalc_interval_sec;
303         int ret;
304 >>>>>>> replacement
305
306 <<<<<<< found
307         /*
308          * Make sure that pool knows last SLV and Limit from obd.
309          */
310         ldlm_cli_pool_pop_slv(pl);
311
312         spin_unlock(&pl->pl_lock);
313 ||||||| expected
314         ENTRY;
315
316         recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
317         if (recalc_interval_sec < pl->pl_recalc_period)
318                 return 0;
319
320 =======
321         ENTRY;
322
323         recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
324         if (recalc_interval_sec < pl->pl_recalc_period)
325                 return 0;
326
327 >>>>>>> replacement
328 <<<<<<< found
329 ||||||| expected
330         /*
331          * Check if we need to recalc lists now.
332          */
333         recalc_interval_sec = ktime_get_real_seconds() - pl->pl_recalc_time;
334         if (recalc_interval_sec < pl->pl_recalc_period) {
335                 spin_unlock(&pl->pl_lock);
336 =======
337         /*
338          * Check if we need to recalc lists now.
339          */
340         recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
341         if (recalc_interval_sec < pl->pl_recalc_period) {
342                 spin_unlock(&pl->pl_lock);
343 >>>>>>> replacement
344
345         /*
346          * In the time of canceling locks on client we do not need to maintain
347          * sharp timing, we only want to cancel locks asap according to new SLV.
348          * It may be called when SLV has changed much, this is why we do not
349          * take into account pl->pl_recalc_time here.
350          */
351         ret = ldlm_cancel_lru(container_of(pl, struct ldlm_namespace, ns_pool),
352                               0, LCF_ASYNC, 0);
353
354         spin_lock(&pl->pl_lock);
355         /*
356          * Time of LRU resizing might be longer than period,
357          * so update after LRU resizing rather than before it.
358          */
359         pl->pl_recalc_time = ktime_get_seconds();
360         lprocfs_counter_add(pl->pl_stats, LDLM_POOL_TIMING_STAT,
361                             recalc_interval_sec);
362         spin_unlock(&pl->pl_lock);
363         return ret;
364 }
365
366 /**
367  * This function is main entry point for memory pressure handling on client
368  * side.  Main goal of this function is to cancel some number of locks on
369  * passed @pl according to @nr and @gfp_mask.
370  */
371 static int ldlm_cli_pool_shrink(struct ldlm_pool *pl,
372                                 int nr, gfp_t gfp_mask)
373 {
374         struct ldlm_namespace *ns;
375         int unused;
376
377         ns = container_of(pl, struct ldlm_namespace, ns_pool);
378
379         /*
380          * Do not cancel locks in case lru resize is disabled for this ns.
381          */
382         if (!ns_connect_lru_resize(ns))
383                 return 0;
384
385         /*
386          * Make sure that pool knows last SLV and Limit from obd.
387          */
388         spin_lock(&pl->pl_lock);
389         ldlm_cli_pool_pop_slv(pl);
390         spin_unlock(&pl->pl_lock);
391
392         spin_lock(&ns->ns_lock);
393         unused = ns->ns_nr_unused;
394         spin_unlock(&ns->ns_lock);
395
396         if (nr == 0)
397                 return (unused / 100) * sysctl_vfs_cache_pressure;
398         else
399                 return ldlm_cancel_lru(ns, nr, LCF_ASYNC, 0);
400 }
401
402 static const struct ldlm_pool_ops ldlm_cli_pool_ops = {
403         .po_recalc = ldlm_cli_pool_recalc,
404         .po_shrink = ldlm_cli_pool_shrink
405 };
406
407 /**
408  * Pool recalc wrapper. Will call either client or server pool recalc callback
409  * depending what pool @pl is used.
410  *
411  * \retval              time in seconds for the next recalc of this pool
412  */
413 <<<<<<< found
414 static int ldlm_pool_recalc(struct ldlm_pool *pl)
415 {
416         u32 recalc_interval_sec;
417 ||||||| expected
418 time64_t ldlm_pool_recalc(struct ldlm_pool *pl)
419 {
420         time64_t recalc_interval_sec;
421 =======
422 time64_t ldlm_pool_recalc(struct ldlm_pool *pl)
423 {
424         timeout_t recalc_interval_sec;
425 >>>>>>> replacement
426         int count;
427
428         recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
429         if (recalc_interval_sec > 0) {
430                 spin_lock(&pl->pl_lock);
431 <<<<<<< found
432                 recalc_interval_sec = ktime_get_real_seconds() -
433                                       pl->pl_recalc_time;
434 ||||||| expected
435                 recalc_interval_sec = ktime_get_real_seconds() -
436                         pl->pl_recalc_time;
437 =======
438                 recalc_interval_sec = ktime_get_seconds() - pl->pl_recalc_time;
439 >>>>>>> replacement
440
441                 if (recalc_interval_sec > 0) {
442                         /*
443                          * Update pool statistics every recalc interval.
444                          */
445                         ldlm_pool_recalc_stats(pl, recalc_interval_sec);
446
447                         /*
448                          * Zero out all rates and speed for the last period.
449                          */
450                         atomic_set(&pl->pl_grant_rate, 0);
451                         atomic_set(&pl->pl_cancel_rate, 0);
452                 }
453                 spin_unlock(&pl->pl_lock);
454         }
455
456         if (pl->pl_ops->po_recalc) {
457                 count = pl->pl_ops->po_recalc(pl);
458                 lprocfs_counter_add(pl->pl_stats, LDLM_POOL_RECALC_STAT,
459                                     count);
460         }
461
462 <<<<<<< found
463         recalc_interval_sec = pl->pl_recalc_time - ktime_get_real_seconds() +
464                               pl->pl_recalc_period;
465         if (recalc_interval_sec <= 0) {
466                 /* DEBUG: should be re-removed after LU-4536 is fixed */
467                 CDEBUG(D_DLMTRACE,
468                        "%s: Negative interval(%ld), too short period(%ld)\n",
469                        pl->pl_name, (long)recalc_interval_sec,
470                        (long)pl->pl_recalc_period);
471
472                 /* Prevent too frequent recalculation. */
473                 recalc_interval_sec = 1;
474         }
475
476         return recalc_interval_sec;
477 ||||||| expected
478         recalc_interval_sec = pl->pl_recalc_time - ktime_get_real_seconds() +
479                               pl->pl_recalc_period;
480         if (recalc_interval_sec <= 0) {
481                 /* DEBUG: should be re-removed after LU-4536 is fixed */
482                 CDEBUG(D_DLMTRACE, "%s: Negative interval(%lld), too short period(%lld)\n",
483                        pl->pl_name, recalc_interval_sec,
484                        (s64)pl->pl_recalc_period);
485
486                 /* Prevent too frequent recalculation. */
487                 recalc_interval_sec = 1;
488         }
489
490         return recalc_interval_sec;
491 =======
492         return pl->pl_recalc_time + pl->pl_recalc_period;
493 >>>>>>> replacement
494 }
495
496 /*
497  * Pool shrink wrapper. Will call either client or server pool recalc callback
498  * depending what pool pl is used. When nr == 0, just return the number of
499  * freeable locks. Otherwise, return the number of canceled locks.
500  */
501 static int ldlm_pool_shrink(struct ldlm_pool *pl, int nr, gfp_t gfp_mask)
502 {
503         int cancel = 0;
504
505         if (pl->pl_ops->po_shrink) {
506                 cancel = pl->pl_ops->po_shrink(pl, nr, gfp_mask);
507                 if (nr > 0) {
508                         lprocfs_counter_add(pl->pl_stats,
509                                             LDLM_POOL_SHRINK_REQTD_STAT,
510                                             nr);
511                         lprocfs_counter_add(pl->pl_stats,
512                                             LDLM_POOL_SHRINK_FREED_STAT,
513                                             cancel);
514                         CDEBUG(D_DLMTRACE,
515                                "%s: request to shrink %d locks, shrunk %d\n",
516                                pl->pl_name, nr, cancel);
517                 }
518         }
519         return cancel;
520 }
521
522 static int lprocfs_pool_state_seq_show(struct seq_file *m, void *unused)
523 {
524         int granted, grant_rate, cancel_rate;
525         int grant_speed, lvf;
526         struct ldlm_pool *pl = m->private;
527         timeout_t period;
528         u64 slv, clv;
529         u32 limit;
530
531         spin_lock(&pl->pl_lock);
532         slv = pl->pl_server_lock_volume;
533         clv = pl->pl_client_lock_volume;
534         limit = atomic_read(&pl->pl_limit);
535         granted = atomic_read(&pl->pl_granted);
536         period = ktime_get_seconds() - pl->pl_recalc_time;
537         if (period <= 0)
538                 period = 1;
539         grant_rate = atomic_read(&pl->pl_grant_rate) / period;
540         cancel_rate = atomic_read(&pl->pl_cancel_rate) / period;
541         grant_speed = grant_rate - cancel_rate;
542         lvf = atomic_read(&pl->pl_lock_volume_factor);
543         spin_unlock(&pl->pl_lock);
544
545         seq_printf(m, "LDLM pool state (%s):\n"
546                       "  SLV: %llu\n"
547                       "  CLV: %llu\n"
548                       "  LVF: %d\n",
549                       pl->pl_name, slv, clv, (lvf * 100) >> 8);
550
551         seq_printf(m, "  GR:  %d\n  CR:  %d\n  GS:  %d\n"
552                       "  G:   %d\n  L:   %d\n",
553                       grant_rate, cancel_rate, grant_speed,
554                       granted, limit);
555
556         return 0;
557 }
558
559 LDEBUGFS_SEQ_FOPS_RO(lprocfs_pool_state);
560
561 static ssize_t grant_speed_show(struct kobject *kobj, struct attribute *attr,
562                                 char *buf)
563 {
564         struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool,
565                                             pl_kobj);
566         int grant_speed;
567         timeout_t period;
568
569         spin_lock(&pl->pl_lock);
570         /* serialize with ldlm_pool_recalc */
571         period = ktime_get_seconds() - pl->pl_recalc_time;
572         if (period <= 0)
573                 period = 1;
574         grant_speed = (atomic_read(&pl->pl_grant_rate) -
575                        atomic_read(&pl->pl_cancel_rate)) / period;
576         spin_unlock(&pl->pl_lock);
577         return sprintf(buf, "%d\n", grant_speed);
578 }
579 LUSTRE_RO_ATTR(grant_speed);
580
581 LDLM_POOL_SYSFS_READER_SHOW(grant_plan, int);
582 LUSTRE_RO_ATTR(grant_plan);
583
584 LDLM_POOL_SYSFS_READER_SHOW(recalc_period, int);
585 LDLM_POOL_SYSFS_WRITER_STORE(recalc_period, int);
586 LUSTRE_RW_ATTR(recalc_period);
587
588 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(server_lock_volume, u64);
589 LUSTRE_RO_ATTR(server_lock_volume);
590
591 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(client_lock_volume, u64);
592 LUSTRE_RO_ATTR(client_lock_volume);
593
594 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(limit, atomic);
595 LDLM_POOL_SYSFS_WRITER_NOLOCK_STORE(limit, atomic);
596 LUSTRE_RW_ATTR(limit);
597
598 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(granted, atomic);
599 LUSTRE_RO_ATTR(granted);
600
601 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(cancel_rate, atomic);
602 LUSTRE_RO_ATTR(cancel_rate);
603
604 LDLM_POOL_SYSFS_READER_NOLOCK_SHOW(grant_rate, atomic);
605 LUSTRE_RO_ATTR(grant_rate);
606
607 static ssize_t lock_volume_factor_show(struct kobject *kobj,
608                                        struct attribute *attr,
609                                        char *buf)
610 {
611         struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool, pl_kobj);
612         unsigned long tmp;
613
614         tmp = (atomic_read(&pl->pl_lock_volume_factor) * 100) >> 8;
615         return sprintf(buf, "%lu\n", tmp);
616 }
617
618 static ssize_t lock_volume_factor_store(struct kobject *kobj,
619                                         struct attribute *attr,
620                                         const char *buffer,
621                                         size_t count)
622 {
623         struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool, pl_kobj);
624         unsigned long tmp;
625         int rc;
626
627         rc = kstrtoul(buffer, 10, &tmp);
628         if (rc < 0) {
629                 return rc;
630         }
631
632         tmp = (tmp << 8) / 100;
633         atomic_set(&pl->pl_lock_volume_factor, tmp);
634
635         return count;
636
637 }
638 LUSTRE_RW_ATTR(lock_volume_factor);
639
640 static ssize_t recalc_time_show(struct kobject *kobj,
641                                 struct attribute *attr,
642                                 char *buf)
643 {
644         struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool, pl_kobj);
645
646         return snprintf(buf, PAGE_SIZE, "%llu\n",
647                         ktime_get_seconds() - pl->pl_recalc_time);
648 }
649 LUSTRE_RO_ATTR(recalc_time);
650
651 /* These are for pools in /sys/fs/lustre/ldlm/namespaces/.../pool */
652 static struct attribute *ldlm_pl_attrs[] = {
653         &lustre_attr_grant_speed.attr,
654         &lustre_attr_grant_plan.attr,
655         &lustre_attr_recalc_period.attr,
656         &lustre_attr_server_lock_volume.attr,
657         &lustre_attr_client_lock_volume.attr,
658         &lustre_attr_recalc_time.attr,
659         &lustre_attr_limit.attr,
660         &lustre_attr_granted.attr,
661         &lustre_attr_cancel_rate.attr,
662         &lustre_attr_grant_rate.attr,
663         &lustre_attr_lock_volume_factor.attr,
664         NULL,
665 };
666
667 static void ldlm_pl_release(struct kobject *kobj)
668 {
669         struct ldlm_pool *pl = container_of(kobj, struct ldlm_pool,
670                                             pl_kobj);
671         complete(&pl->pl_kobj_unregister);
672 }
673
674 static struct kobj_type ldlm_pl_ktype = {
675         .default_attrs  = ldlm_pl_attrs,
676         .sysfs_ops      = &lustre_sysfs_ops,
677         .release        = ldlm_pl_release,
678 };
679
680 static int ldlm_pool_sysfs_init(struct ldlm_pool *pl)
681 {
682         struct ldlm_namespace *ns = container_of(pl, struct ldlm_namespace,
683                                                  ns_pool);
684         int err;
685
686         init_completion(&pl->pl_kobj_unregister);
687         err = kobject_init_and_add(&pl->pl_kobj, &ldlm_pl_ktype, &ns->ns_kobj,
688                                    "pool");
689
690         return err;
691 }
692
693 static int ldlm_pool_debugfs_init(struct ldlm_pool *pl)
694 {
695         struct ldlm_namespace *ns = container_of(pl, struct ldlm_namespace,
696                                                  ns_pool);
697         struct dentry *debugfs_ns_parent;
698         struct ldebugfs_vars pool_vars[2];
699         int rc = 0;
700
701         debugfs_ns_parent = ns->ns_debugfs_entry;
702         if (IS_ERR_OR_NULL(debugfs_ns_parent)) {
703                 CERROR("%s: debugfs entry is not initialized\n",
704                        ldlm_ns_name(ns));
705                 rc = -EINVAL;
706                 goto out;
707         }
708         pl->pl_debugfs_entry = debugfs_create_dir("pool", debugfs_ns_parent);
709
710         memset(pool_vars, 0, sizeof(pool_vars));
711
712         ldlm_add_var(&pool_vars[0], pl->pl_debugfs_entry, "state", pl,
713                      &lprocfs_pool_state_fops);
714
715         pl->pl_stats = lprocfs_alloc_stats(LDLM_POOL_LAST_STAT -
716                                            LDLM_POOL_FIRST_STAT, 0);
717         if (!pl->pl_stats) {
718                 rc = -ENOMEM;
719                 goto out;
720         }
721
722         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANTED_STAT,
723                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
724                              "granted", "locks");
725         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_STAT,
726                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
727                              "grant", "locks");
728         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_STAT,
729                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
730                              "cancel", "locks");
731         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_RATE_STAT,
732                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
733                              "grant_rate", "locks/s");
734         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_CANCEL_RATE_STAT,
735                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
736                              "cancel_rate", "locks/s");
737         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_GRANT_PLAN_STAT,
738                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
739                              "grant_plan", "locks/s");
740         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SLV_STAT,
741                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
742                              "slv", "slv");
743         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_REQTD_STAT,
744                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
745                              "shrink_request", "locks");
746         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_SHRINK_FREED_STAT,
747                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
748                              "shrink_freed", "locks");
749         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_RECALC_STAT,
750                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
751                              "recalc_freed", "locks");
752         lprocfs_counter_init(pl->pl_stats, LDLM_POOL_TIMING_STAT,
753                              LPROCFS_CNTR_AVGMINMAX | LPROCFS_CNTR_STDDEV,
754                              "recalc_timing", "sec");
755         debugfs_create_file("stats", 0644, pl->pl_debugfs_entry, pl->pl_stats,
756                             &ldebugfs_stats_seq_fops);
757
758 out:
759         return rc;
760 }
761
762 static void ldlm_pool_sysfs_fini(struct ldlm_pool *pl)
763 {
764         kobject_put(&pl->pl_kobj);
765         wait_for_completion(&pl->pl_kobj_unregister);
766 }
767
768 static void ldlm_pool_debugfs_fini(struct ldlm_pool *pl)
769 {
770         if (pl->pl_stats) {
771                 lprocfs_free_stats(&pl->pl_stats);
772                 pl->pl_stats = NULL;
773         }
774         debugfs_remove_recursive(pl->pl_debugfs_entry);
775 }
776
777 int ldlm_pool_init(struct ldlm_pool *pl, struct ldlm_namespace *ns,
778                    int idx, enum ldlm_side client)
779 {
780         int rc;
781
782         spin_lock_init(&pl->pl_lock);
783         atomic_set(&pl->pl_granted, 0);
784         pl->pl_recalc_time = ktime_get_seconds();
785         atomic_set(&pl->pl_lock_volume_factor, 1 << 8);
786
787         atomic_set(&pl->pl_grant_rate, 0);
788         atomic_set(&pl->pl_cancel_rate, 0);
789         pl->pl_grant_plan = LDLM_POOL_GP(LDLM_POOL_HOST_L);
790
791         snprintf(pl->pl_name, sizeof(pl->pl_name), "ldlm-pool-%s-%d",
792                  ldlm_ns_name(ns), idx);
793
794         atomic_set(&pl->pl_limit, 1);
795         pl->pl_server_lock_volume = 0;
796         pl->pl_ops = &ldlm_cli_pool_ops;
797         pl->pl_recalc_period = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
798         pl->pl_client_lock_volume = 0;
799         rc = ldlm_pool_debugfs_init(pl);
800         if (rc)
801                 return rc;
802
803         rc = ldlm_pool_sysfs_init(pl);
804         if (rc)
805                 return rc;
806
807         CDEBUG(D_DLMTRACE, "Lock pool %s is initialized\n", pl->pl_name);
808
809         return rc;
810 }
811
812 void ldlm_pool_fini(struct ldlm_pool *pl)
813 {
814         ldlm_pool_sysfs_fini(pl);
815         ldlm_pool_debugfs_fini(pl);
816
817         /*
818          * Pool should not be used after this point. We can't free it here as
819          * it lives in struct ldlm_namespace, but still interested in catching
820          * any abnormal using cases.
821          */
822         POISON(pl, 0x5a, sizeof(*pl));
823 }
824
825 /**
826  * Add new taken ldlm lock @lock into pool @pl accounting.
827  */
828 void ldlm_pool_add(struct ldlm_pool *pl, struct ldlm_lock *lock)
829 {
830         /*
831          * FLOCK locks are special in a sense that they are almost never
832          * cancelled, instead special kind of lock is used to drop them.
833          * also there is no LRU for flock locks, so no point in tracking
834          * them anyway.
835          */
836         if (lock->l_resource->lr_type == LDLM_FLOCK)
837                 return;
838
839         atomic_inc(&pl->pl_granted);
840         atomic_inc(&pl->pl_grant_rate);
841         lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_GRANT_STAT);
842         /*
843          * Do not do pool recalc for client side as all locks which
844          * potentially may be canceled has already been packed into
845          * enqueue/cancel rpc. Also we do not want to run out of stack
846          * with too long call paths.
847          */
848 }
849
850 /**
851  * Remove ldlm lock @lock from pool @pl accounting.
852  */
853 void ldlm_pool_del(struct ldlm_pool *pl, struct ldlm_lock *lock)
854 {
855         /*
856          * Filter out FLOCK locks. Read above comment in ldlm_pool_add().
857          */
858         if (lock->l_resource->lr_type == LDLM_FLOCK)
859                 return;
860
861         LASSERT(atomic_read(&pl->pl_granted) > 0);
862         atomic_dec(&pl->pl_granted);
863         atomic_inc(&pl->pl_cancel_rate);
864
865         lprocfs_counter_incr(pl->pl_stats, LDLM_POOL_CANCEL_STAT);
866 }
867
868 /**
869  * Returns current @pl SLV.
870  *
871  * \pre ->pl_lock is not locked.
872  */
873 u64 ldlm_pool_get_slv(struct ldlm_pool *pl)
874 {
875         u64 slv;
876
877         spin_lock(&pl->pl_lock);
878         slv = pl->pl_server_lock_volume;
879         spin_unlock(&pl->pl_lock);
880         return slv;
881 }
882
883 /**
884  * Sets passed @clv to @pl.
885  *
886  * \pre ->pl_lock is not locked.
887  */
888 void ldlm_pool_set_clv(struct ldlm_pool *pl, u64 clv)
889 {
890         spin_lock(&pl->pl_lock);
891         pl->pl_client_lock_volume = clv;
892         spin_unlock(&pl->pl_lock);
893 }
894
895 /**
896  * Returns current LVF from @pl.
897  */
898 u32 ldlm_pool_get_lvf(struct ldlm_pool *pl)
899 {
900         return atomic_read(&pl->pl_lock_volume_factor);
901 }
902
903 static int ldlm_pool_granted(struct ldlm_pool *pl)
904 {
905         return atomic_read(&pl->pl_granted);
906 }
907
908 /*
909  * count locks from all namespaces (if possible). Returns number of
910  * cached locks.
911  */
912 static unsigned long ldlm_pools_count(enum ldlm_side client, gfp_t gfp_mask)
913 {
914         unsigned long total = 0;
915         int nr_ns;
916         struct ldlm_namespace *ns;
917         struct ldlm_namespace *ns_old = NULL; /* loop detection */
918
919         if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
920                 return 0;
921
922         /*
923          * Find out how many resources we may release.
924          */
925         for (nr_ns = ldlm_namespace_nr_read(client);
926              nr_ns > 0; nr_ns--) {
927                 mutex_lock(ldlm_namespace_lock(client));
928                 if (list_empty(ldlm_namespace_list(client))) {
929                         mutex_unlock(ldlm_namespace_lock(client));
930                         return 0;
931                 }
932                 ns = ldlm_namespace_first_locked(client);
933
934                 if (ns == ns_old) {
935                         mutex_unlock(ldlm_namespace_lock(client));
936                         break;
937                 }
938
939                 if (ldlm_ns_empty(ns)) {
940                         ldlm_namespace_move_to_inactive_locked(ns, client);
941                         mutex_unlock(ldlm_namespace_lock(client));
942                         continue;
943                 }
944
945                 if (!ns_old)
946                         ns_old = ns;
947
948                 ldlm_namespace_get(ns);
949                 ldlm_namespace_move_to_active_locked(ns, client);
950                 mutex_unlock(ldlm_namespace_lock(client));
951                 total += ldlm_pool_shrink(&ns->ns_pool, 0, gfp_mask);
952                 ldlm_namespace_put(ns);
953         }
954
955         return total;
956 }
957
958 static unsigned long ldlm_pools_scan(enum ldlm_side client, int nr,
959                                      gfp_t gfp_mask)
960 {
961         unsigned long freed = 0;
962         int tmp, nr_ns;
963         struct ldlm_namespace *ns;
964
965         if (client == LDLM_NAMESPACE_CLIENT && !(gfp_mask & __GFP_FS))
966                 return -1;
967
968         /*
969          * Shrink at least ldlm_namespace_nr_read(client) namespaces.
970          */
971         for (tmp = nr_ns = ldlm_namespace_nr_read(client);
972              tmp > 0; tmp--) {
973                 int cancel, nr_locks;
974
975                 /*
976                  * Do not call shrink under ldlm_namespace_lock(client)
977                  */
978                 mutex_lock(ldlm_namespace_lock(client));
979                 if (list_empty(ldlm_namespace_list(client))) {
980                         mutex_unlock(ldlm_namespace_lock(client));
981                         break;
982                 }
983                 ns = ldlm_namespace_first_locked(client);
984                 ldlm_namespace_get(ns);
985                 ldlm_namespace_move_to_active_locked(ns, client);
986                 mutex_unlock(ldlm_namespace_lock(client));
987
988                 nr_locks = ldlm_pool_granted(&ns->ns_pool);
989                 /*
990                  * We use to shrink propotionally but with new shrinker API,
991                  * we lost the total number of freeable locks.
992                  */
993                 cancel = 1 + min_t(int, nr_locks, nr / nr_ns);
994                 freed += ldlm_pool_shrink(&ns->ns_pool, cancel, gfp_mask);
995                 ldlm_namespace_put(ns);
996         }
997         /*
998          * we only decrease the SLV in server pools shrinker, return
999          * SHRINK_STOP to kernel to avoid needless loop. LU-1128
1000          */
1001         return freed;
1002 }
1003
1004 static unsigned long ldlm_pools_cli_count(struct shrinker *s,
1005                                           struct shrink_control *sc)
1006 {
1007         return ldlm_pools_count(LDLM_NAMESPACE_CLIENT, sc->gfp_mask);
1008 }
1009
1010 static unsigned long ldlm_pools_cli_scan(struct shrinker *s,
1011                                          struct shrink_control *sc)
1012 {
1013         return ldlm_pools_scan(LDLM_NAMESPACE_CLIENT, sc->nr_to_scan,
1014                                sc->gfp_mask);
1015 }
1016
1017 static void ldlm_pools_recalc(struct work_struct *ws);
1018 static DECLARE_DELAYED_WORK(ldlm_recalc_pools, ldlm_pools_recalc);
1019
1020 static void ldlm_pools_recalc(struct work_struct *ws)
1021 {
1022         enum ldlm_side client = LDLM_NAMESPACE_CLIENT;
1023         struct ldlm_namespace *ns;
1024         struct ldlm_namespace *ns_old = NULL;
1025         /* seconds of sleep if no active namespaces */
1026 <<<<<<< found
1027         time64_t time = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
1028 ||||||| expected
1029         time64_t delay = side == LDLM_NAMESPACE_SERVER ?
1030                                  LDLM_POOL_SRV_DEF_RECALC_PERIOD :
1031                                  LDLM_POOL_CLI_DEF_RECALC_PERIOD;
1032 =======
1033         time64_t delay = ktime_get_seconds() +
1034                          (side == LDLM_NAMESPACE_SERVER ?
1035                           LDLM_POOL_SRV_DEF_RECALC_PERIOD :
1036                           LDLM_POOL_CLI_DEF_RECALC_PERIOD);
1037 >>>>>>> replacement
1038         int nr;
1039
1040         /*
1041          * Recalc at least ldlm_namespace_nr_read(client) namespaces.
1042          */
1043         for (nr = ldlm_namespace_nr_read(client); nr > 0; nr--) {
1044                 int skip;
1045                 /*
1046                  * Lock the list, get first @ns in the list, getref, move it
1047                  * to the tail, unlock and call pool recalc. This way we avoid
1048                  * calling recalc under @ns lock what is really good as we get
1049                  * rid of potential deadlock on client nodes when canceling
1050                  * locks synchronously.
1051                  */
1052                 mutex_lock(ldlm_namespace_lock(client));
1053                 if (list_empty(ldlm_namespace_list(client))) {
1054                         mutex_unlock(ldlm_namespace_lock(client));
1055                         break;
1056                 }
1057                 ns = ldlm_namespace_first_locked(client);
1058
1059                 if (ns_old == ns) { /* Full pass complete */
1060                         mutex_unlock(ldlm_namespace_lock(client));
1061                         break;
1062                 }
1063
1064                 /* We got an empty namespace, need to move it back to inactive
1065                  * list.
1066                  * The race with parallel resource creation is fine:
1067                  * - If they do namespace_get before our check, we fail the
1068                  *   check and they move this item to the end of the list anyway
1069                  * - If we do the check and then they do namespace_get, then
1070                  *   we move the namespace to inactive and they will move
1071                  *   it back to active (synchronised by the lock, so no clash
1072                  *   there).
1073                  */
1074                 if (ldlm_ns_empty(ns)) {
1075                         ldlm_namespace_move_to_inactive_locked(ns, client);
1076                         mutex_unlock(ldlm_namespace_lock(client));
1077                         continue;
1078                 }
1079
1080                 if (!ns_old)
1081                         ns_old = ns;
1082
1083                 spin_lock(&ns->ns_lock);
1084                 /*
1085                  * skip ns which is being freed, and we don't want to increase
1086                  * its refcount again, not even temporarily. bz21519 & LU-499.
1087                  */
1088                 if (ns->ns_stopping) {
1089                         skip = 1;
1090                 } else {
1091                         skip = 0;
1092                         ldlm_namespace_get(ns);
1093                 }
1094                 spin_unlock(&ns->ns_lock);
1095
1096                 ldlm_namespace_move_to_active_locked(ns, client);
1097                 mutex_unlock(ldlm_namespace_lock(client));
1098
1099                 /*
1100                  * After setup is done - recalc the pool.
1101                  */
1102                 if (!skip) {
1103                         time64_t ttime = ldlm_pool_recalc(&ns->ns_pool);
1104
1105                         if (ttime < time)
1106                                 time = ttime;
1107
1108                         ldlm_namespace_put(ns);
1109                 }
1110         }
1111
1112         /* Wake up the blocking threads from time to time. */
1113         ldlm_bl_thread_wakeup();
1114
1115         delay -= ktime_get_seconds();
1116         if (delay <= 0) {
1117                 /* Prevent too frequent recalculation. */
1118                 CDEBUG(D_DLMTRACE, "Negative interval(%lld)\n", delay);
1119                 delay = 1;
1120         }
1121
1122         schedule_delayed_work(&ldlm_recalc_pools, time * HZ);
1123 }
1124
1125 static int ldlm_pools_thread_start(void)
1126 {
1127         time64_t delay;
1128
1129         schedule_delayed_work(&ldlm_recalc_pools, 0);
1130
1131 <<<<<<< found
1132         return 0;
1133 }
1134
1135 static void ldlm_pools_thread_stop(void)
1136 {
1137 ||||||| expected
1138         DEF_SHRINKER_VAR(shcvar, ldlm_pools_cli_shrink,
1139                          ldlm_pools_cli_count, ldlm_pools_cli_scan);
1140
1141         schedule_delayed_work(&ldlm_pools_recalc_work,
1142                               LDLM_POOL_CLI_DEF_RECALC_PERIOD);
1143         ldlm_pools_srv_shrinker = set_shrinker(DEFAULT_SEEKS, &shsvar);
1144 =======
1145         DEF_SHRINKER_VAR(shcvar, ldlm_pools_cli_shrink,
1146                          ldlm_pools_cli_count, ldlm_pools_cli_scan);
1147
1148 #ifdef HAVE_SERVER_SUPPORT
1149         delay = min(LDLM_POOL_SRV_DEF_RECALC_PERIOD,
1150                     LDLM_POOL_CLI_DEF_RECALC_PERIOD);
1151 #else
1152         delay = LDLM_POOL_CLI_DEF_RECALC_PERIOD;
1153 #endif
1154
1155         schedule_delayed_work(&ldlm_pools_recalc_work, delay);
1156         ldlm_pools_srv_shrinker = set_shrinker(DEFAULT_SEEKS, &shsvar);
1157 >>>>>>> replacement
1158         cancel_delayed_work_sync(&ldlm_recalc_pools);
1159 }
1160
1161 static struct shrinker ldlm_pools_cli_shrinker = {
1162         .count_objects  = ldlm_pools_cli_count,
1163         .scan_objects   = ldlm_pools_cli_scan,
1164         .seeks          = DEFAULT_SEEKS,
1165 };
1166
1167 int ldlm_pools_init(void)
1168 {
1169         int rc;
1170
1171         rc = ldlm_pools_thread_start();
1172         if (!rc)
1173                 rc = register_shrinker(&ldlm_pools_cli_shrinker);
1174
1175         return rc;
1176 }
1177
1178 void ldlm_pools_fini(void)
1179 {
1180         unregister_shrinker(&ldlm_pools_cli_shrinker);
1181
1182         ldlm_pools_thread_stop();
1183 }